Article ID Journal Published Year Pages File Type
1689282 Vacuum 2010 5 Pages PDF
Abstract
Nanocrystalline zinc oxide thin films were deposited on glass and silicon substrates by using pulsed laser deposition at different laser energy densities (1.5, 2, and 3 J/cm2). The film thickness, surface roughness, composition, optical and structural properties of the deposited films were studied using an α-step surface profilometer, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), optical transmittance, and X-ray diffraction (XRD), respectively. The film thickness was calculated as 244 nm. AFM analysis shows that the root-mean-square roughness increases with increasing laser energy density. XPS analysis shows that the interaction of zinc with oxygen atoms is greatly increased at high laser energy density. In the optical transmittance spectra, a shift of the absorption edge towards higher wavelength region confirms that the optical band gap increases with an increase in laser energy density. The particle size of the deposited films was measured by XRD, it is found to be in the range from 7.87 to 11.81 nm. It reveals that the particle size increases with an increase in laser energy density.
Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , ,