Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1689480 | Vacuum | 2007 | 9 Pages |
The growth process of CuO and Cu2O thin films on MgO(0 0 1) substrates by reactive dc-magnetron sputtering was studied by reflection high-energy electron diffraction (RHEED) and atomic-force microscopy (AFM). The RHEED pattern and AFM image showed that (1) three-dimensional Cu(0 0 1) islands grew on MgO under the nonreactive sputtering condition, (2) CuO(1 1 1) was deposited layer by layer on MgO at 400 °C under the reactive sputtering condition, and (3) the film deposited at 600 °C in the initial growth stage was composed of three-dimensional Cu islands because O2 gas could not be incorporated into them due to the low sticking coefficient of O2 on MgO under the reactive sputtering condition. The layer-by-layer CuO(1 1 1) thin-film growth process is discussed from the viewpoint that Cu and oxygen species are supplied in stoichiometry onto the MgO substrate to form CuO thin-film crystals while maintaining minimum interfacial energy between CuO and MgO.