Article ID Journal Published Year Pages File Type
1689606 Vacuum 2009 4 Pages PDF
Abstract

Cathodic cage plasma nitriding is a new growth technique based on multiple hollow cathode effects. The samples are kept at a floating potential inside a cage that acts as a cathode and shields the samples from the cathodic potential. The aim of this work is to perform a systematic study of the properties of nitrided layers as a function of the distance from the nitriding sample surface to the cage wall using this technique. Cylindrical austenitic stainless steel AISI 316 samples were placed in different positions on an alumina plate inside the cathodic cage. The nitrided samples were characterized by optical microscopy, X-ray diffraction and microhardness measurements. The results show that the temperature inside the cage is nearly uniform and that the nitrided layers possess good physical properties and uniformity. Therefore, the differences in the nitrided layer thicknesses obtained at different positions must be due to particle flow reaching the sample surface, depending on how far the sample is from the cage walls.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , , ,