Article ID Journal Published Year Pages File Type
1689785 Vacuum 2007 7 Pages PDF
Abstract
A technique to characterize the nonuniformity of surface roughness (NSR) is presented. A discrete wavelet transformation (DWT) was used to quantitatively differentiate surface patterns. The technique was evaluated with the data collected from the etching of silicon oxynitride films in a C2F6 inductively coupled plasma. 3-D surface images were obtained by using atomic force microscopy. Vertical and lateral NSRs were investigated as a function of process parameters, including radio frequency source power, bias power, and pressure. The NSR data were correlated to experimental measurements of the surface roughness. It is noticeable that for any parameter variations there exist nearly identical NSRs. For each parameter variation, there was at least one specific NSR consistent with the surface roughness measurement. Selected NSRs can be utilized to monitor a variation in NSR and surface roughness simultaneously. Also, NSR may be more stringently optimized by controlling NSRs in a directional fashion.
Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, ,