Article ID Journal Published Year Pages File Type
1690146 Vacuum 2008 5 Pages PDF
Abstract

Boronizing was performed by using a solid medium of Ekabor powders at 1073, 1148 and 1223 K for 2, 4 and 8 h. After boronizing, the major dominant phase was found to be Fe2B and the minors were CrB and Ni2B. Boride coating resulted in smooth and dense feature confirmed by optical and SEM. The thickness of boride layer varied from 7 to 87 μm depending on the process time and temperature. Boride layer has a hardness of over 1700 HVN, while the substrate's hardness was about 180 HVN. The growth kinetics of boride layer was found to obey a parabolic rate demonstrating a solid diffusion limited process. The kinetic rates for different process times were plotted by using Arrhenius equation. From this measurement, the activation energy of boride growth for this study was determined as 199 kJ/mol. In addition, the possibility of predicting the iso-thickness of boride layer variation was studied and an empirical relationship between process parameters and boride layer thickness was established. EDS studies showed that Cr concentrated in the coating layer and Ni and Fe concentrated in the substrate.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , , ,