Article ID Journal Published Year Pages File Type
1692104 Optical Materials 2016 7 Pages PDF
Abstract
For the experiment on living primary neurons, nanoparticles doped with 0.5%Tb and 7%Y were chosen based on their luminescence emission intensity. Recently transfer of the nanoparticles through the barriers in the organism including blood-brain barrier following their alimentary absorption was confirmed (Godlewski and Godlewski, 2012). This raised the possibility of the nanoparticle application as a tool in the neuroscience, and the question of potential mechanisms of nanoparticle turnover in neurons. Concentration of 0.001 mg/ml of ZrO2:0.5%Tb 7%Y in growth medium was added to the primary murine culture medium, and the intracellular trafficking of nanoparticles was observed following 15 min pre-incubation period. ZrO2:0.5%Tb 7%Y nanoparticles were dynamically absorbed by the neurons and the dynamic passage of transport vesicles containing ZrO2:0.5%Tb 7%Y nanoparticles was observed along the neuronal processes and in between two neighbouring neurons. Reassuming, the ZrO2:0.5%Tb 7%Y nanoparticles proved to be biocompatible and a valid tool to assess intracellular trafficking dynamics in the neurobiology.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , , ,