Article ID Journal Published Year Pages File Type
1694085 Applied Clay Science 2016 15 Pages PDF
Abstract
After dismantling and sampling the specimens, distribution of soluble ions, exchangeable cations and mineralogy were studied in the bentonite by different instrumental techniques. Iron migration or any impact of the corrosion products in the bentonite was not noticeable in the clay. Both, mortar and magnetite acted as sinks of chloride and sulfate. Small quantities of Ca-Al-sulfates and carboaluminates, which can allocate chlorides, were determined near the mortar-bentonite interface. Portlandite dissolved near the bentonite interface and induced the formation of calcium silicates hydrates (C-S-H) phases cementing the clay interface characterizing a calcium front that was developed from the mortar towards the bentonite. Magnesium silicate hydrates (M-S-H) phases were also concentrated at the interface with mortar in the natural bentonite. It was also determined that natural bentonite has potentially higher buffering capacity attenuating the calcium alkaline front than the pretreated clay. In both cases, a low porosity bentonite-mortar zone was experimentally created at the interface. This type of material should be carefully studied in order to predict the potential for further development of a diffusive alkaline alteration, the radionuclides retention and the consequences in the hydration rate of the unaffected bentonite buffer.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , , , ,