Article ID Journal Published Year Pages File Type
1694178 Applied Clay Science 2016 10 Pages PDF
Abstract

•Experimental and molecular modeling study of NO3− diffusion at organoclay interface.•NO3− interface diffusivity is strongly affected by organic cations surface density.•NO3− retardation capacity of organoclays increases with amount of organic cation.•Molecular dynamic study explained NO3− diffusion mechanism at organoclay interface.•Molecular simulations and experiment showed comparable trends of NO3− diffusion.

The work presents experimental and molecular modeling study of the anion diffusion with nitrate as a model probe in the organically modified bentonite. Organoclay samples with different loadings of the two cations Hexadecyltrimethylammonium (HDTMA+) and Hexadecylpyridinium (HDPy+) were prepared. The diffusivity of NO3− in the interfacial area of the organo-bentonite is strongly affected by the packing density of the organic coating. Through-diffusion experiments verified that the retardation capacity of the organoclays increases with the increasing amount of both organic cations on the clay surface. Observed NO3− diffusion in HDTMA+- and HDPy+-bentonite is in a similar range. Further, classical molecular dynamics studies, performed on sets of HDTMA+- and HDPy+-montmorillonite models, explained a molecular mechanism of the diffusion process of the nitrate anion at the organoclay–water interface. The molecular simulations showed comparable trends of the dependence of the NO3− diffusion coefficient on the content of organic cations on the surface as observed in experiment. Calculations explained how the organic cations are arranged on the surface and revealed that the positively charged head groups of the organic cations play a key role in the decreasing of the diffusivity of nitrate ions.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , ,