Article ID Journal Published Year Pages File Type
1697018 Journal of Manufacturing Processes 2013 8 Pages PDF
Abstract

Optimal parameters to eliminate machining chatter may be identified using analytical stability models which require the dynamics of the tool-holder-spindle-machine assembly. Receptance coupling substructure analysis (RCSA) provides a useful analytical tool to couple measured spindle-machine dynamics with tool-holder models to predict the tool point frequency response function for the assembly. Previous research has demonstrated a procedure to determine all required spindle receptances from a single measurement, where each mode within the measurement bandwidth was modeled as a fixed-free Euler–Bernoulli beam and fit using a manual, iterative procedure. Here, a particle swarm optimization technique is described for fitting the spindle-machine measurement using a fixed-free Euler–Bernoulli beam model for each mode. The performance of the optimization process and RCSA in predicting the tool tip frequency response is evaluated and the results are presented.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, ,