Article ID Journal Published Year Pages File Type
1697128 Journal of Manufacturing Processes 2014 9 Pages PDF
Abstract

Magnetic abrasive finishing (MAF) is a process in which the work surface is finished by removing the material in the form of micro chips by magnetic abrasive particles (MAPs) in the presence of magnetic field in the finishing zone. During the MAF process, the frictional heat is generated at the workpiece surface due to the rubbing action of magnetic abrasive particles with the work surface. The order of temperature rise is important to study, as finishing mechanism and surface integrity of work materials depend upon it. The measurement of temperature distribution during MAF operation at the interface of work piece and flexible magnetic abrasive brush (FMAB) interface is difficult. In the present analysis, finite element based ANSYS software has been used to model and simulate magnetic field distribution, magnetic pressure and temperature distribution at work-brush interface during the process. In this work the maximum magnetic flux density has been simulated of the order of 0.223 T at 0.91 A of current in electromagnet coil. Magnetic pressure on MAPs due to magnetic field of electromagnetic coil has been calculated to evaluate the frictional heat flux generated at the work-brush interface. Transient thermal analysis of workpiece domain has been performed to predict the temperature rise due to frictional heat flux. The predicted temperature on work-brush interface was found in the range of 34–51 °C. The developed simulation results based on FEA have been validated with experimental findings.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , ,