Article ID Journal Published Year Pages File Type
1698232 Procedia CIRP 2016 7 Pages PDF
Abstract

Poly(ɛ-caprolactone) and poly(ethylene glycol) based magnetic nanocomposite scaffolds were fabricated using fused deposition modeling and stereolithography approaches, and a hybrid scaffold was obtained by combining these additive manufacturing technologies. Viscoelastic properties in compression were investigated at 37 °C, spanning a range frequency of four decades. Results suggest that poly(ɛ-caprolactone) and poly(ethylene glycol) based scaffolds adequately reproduce viscoelastic properties of subchondral bone and articular cartilage tissues, respectively. By combining fused deposition modeling and stereolithography it is possible to manufacture a hybrid scaffold suitable for osteochondral tissue regeneration.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , , , , , ,