| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 169882 | Combustion and Flame | 2009 | 8 Pages |
We investigated the flame-spread characteristics of randomly arranged fuel-droplet arrays in microgravity. Flame-spread probability was calculated based on a percolation model with the flame-spread-limit distance of evenly-spaced n-decane droplet arrays in microgravity. Flame-spread probability depends on the occupation fraction of droplets in a lattice and rapidly increases with the occupation fraction. The local flame-spread-limit distance of unevenly-spaced n-decane droplet arrays was experimentally investigated in microgravity. The droplets were arranged in a straight line at uneven intervals. The local flame-spread-limit distance of the unevenly-spaced droplet arrays depended on the droplet arrangement and increased from the flame-spread-limit distance of the evenly-spaced droplet arrays due to interactive effects. The flame-spread probability considering the increase in local flame-spread-limit distance is larger than that without it.
