Article ID Journal Published Year Pages File Type
1699406 Procedia CIRP 2015 6 Pages PDF
Abstract

Unexpected disruptive events in manufacturing systems always interrupt normal production conditions and cause production loss. A resilient system should be designed with the capability to suffer minimum production loss during disruptions, and settle itself to the steady state quickly after each disruption. In this paper, we define production loss (PL), throughput settling time (TST), and total underproduction time (TUT) as three metrics to measure system resilience, and use these measures to assist the design of multi-stage reconfigurable manufacturing systems. Numerical case studies are conducted to investigate how the system resilience is affected by different design factors, including system configuration, level of redundancy or flexibility, and buffer capacities.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering