Article ID Journal Published Year Pages File Type
170096 Combustion and Flame 2007 18 Pages PDF
Abstract

Classic theories of combustion rely upon the principle that the maximum temperature attainable in a reaction is predicted by the adiabatic equilibrium temperature. In certain burner configurations, however, the maximum temperature may locally exceed this value by a significant amount due to heat recirculation, which has led to the concept of superadiabatic combustion. A striking aspect of this type of combustion is a broadening of the limits of flammability due to the accelerating effect of temperature increases on chemical reaction rates. In this paper, a simple analytical model is developed to study the superadiabatic performance of a combustor consisting of two parallel channels of finite length that are divided by a conducting wall. Assuming equal flow rates in the individual channels, the co-flow configuration is equivalent to combustion in conducting tubes, whereas the counterflow configuration is conceptually similar to a Swiss-roll burner. In both cases, the characteristics of superadiabatic combustion of a fuel-rich premixed fuel/air mixture are studied in terms of wall conductivity, heat transfer, and geometry of the combustor.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,