Article ID Journal Published Year Pages File Type
1700985 Procedia CIRP 2014 6 Pages PDF
Abstract
Magnesium alloys are lightweight materials primarily used in transportation industry, and are also emerging as a potential material for biodegradable fixation implants. However, unsatisfactory corrosion resistance largely limits the application of these materials. Residual stresses were reported to have significant influence on corrosion resistance of Mg alloys. In this study, a finite element model was developed to simulate the residual stresses in cryogenic machining of AZ31B Mg alloy. After calibration using experimental data, numerical simulations were conducted to study the influence of cutting edge radius and cooling method (dry vs. cryogenic) on residual stresses. The model can be used to establish proper cutting conditions to induce compressive residual stresses to enhance the corrosion resistance of Mg alloys.
Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , ,