Article ID Journal Published Year Pages File Type
170191 Combustion and Flame 2006 15 Pages PDF
Abstract

The influence of hydrogen addition to the fuel of an atmosphere pressure coflow laminar ethylene–air diffusion flame on soot formation was studied by numerical simulation. A detailed gas-phase reaction mechanism, which includes aromatic chemistry up to four rings, and complex thermal and transport properties were used. The fully coupled elliptic governing equations were solved. The interactions between soot and gas-phase chemistry were taken into account. Radiation heat transfer from CO2, CO, H2O, and soot was calculated using the discrete-ordinates method coupled to a statistical narrow-band-correlated K-based wide-band model. The predicted results were compared with the available experimental data and analyzed. It is indicated that the addition of hydrogen to the fuel in an ethylene–air diffusion flame suppresses soot formation through the effects of dilution and chemistry. This result is in agreement with available experiments. The simulations further suggest that the chemically inhibiting effect of hydrogen addition on soot formation is due to the decrease of hydrogen atom concentration in soot surface growth regions and higher concentration of molecular hydrogen in the lower flame region.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,