Article ID Journal Published Year Pages File Type
1702563 Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 2014 15 Pages PDF
Abstract

ResumenEn el presente artículo se expone una metodología que encara una optimización general del peso de las estructuras de transporte de energía. Esta metodología se basa en la algorítmica del recocido simulado enunciada por Kirkpatrick a principios de los años ochenta, que consiste en un proceso estocástico de pruebas basado en la analogía con el recocido de los metales. El método enunciado por Kirkpatrick permite adoptar soluciones que puedan empeorar la función objetivo, con la finalidad de mejorar la exploración del entorno factible y posibilitar una mejora final de la solución obtenida. El algoritmo propuesto compatibiliza la naturaleza discreta de las secciones de las barras con la naturaleza continua de las variables que definen la geometría y la forma global de la estructura. Así se desarrolla una metodología capaz de obtener la solución a un problema de optimización mixto, evitando, a la vez, posibles explosiones combinatorias derivadas del proceso estocástico. Por otra parte, también se ha complementado el algoritmo de Kirkpatrick con un análisis de sensibilidad de primer orden que proporciona un considerable ahorro en el coste computacional del método y se implementan funciones de penalización exterior para mejorar el tratamiento de las restricciones del diseño. Con todo ello se consigue una metodología general que permite la optimización de estructuras reales de transporte de energía en tiempos de computación asumibles.

A general methodology to optimize the weight of power transmission structures is presented in this article. This methodology is based on the simulated annealing algorithm defined by Kirkpatrick in the early ‘80s. This algorithm consists of a stochastic approach that allows to explore and analyze solutions that do not improve the objective function in order to develop a better exploration of the design region and to obtain the global optimum. The proposed algorithm allows to consider the discrete behavior of the sectional variables for each element and the continuous behavior of the general geometry variables. Thus, an optimization methodology that can deal with a mixed optimization problem and includes both continuum and discrete design variables is developed. In addition, it does not require to study all the possible design combinations defined by discrete design variables. The algorithm proposed usually requires to develop a large number of simulations (structural analysis in this case) in practical applications. Thus, the authors have developed first order Taylor expansions and the first order sensitivity analysis involved in order to reduce the CPU time required. Exterior penalty functions have been also included to deal with the design constraints. Thus, the general methodology proposed allows to optimize real power transmission structures in acceptable CPU time.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , , ,