Article ID Journal Published Year Pages File Type
1703665 Applied Mathematical Modelling 2014 11 Pages PDF
Abstract

Using the interpolating moving least-squares (IMLS) method to obtain the shape function, we present a novel interpolating element-free Galerkin (IEFG) method to solve two-dimensional elastoplasticity problems. The shape function of the IMLS method satisfies the property of Kronecker δ function, then in the meshless methods based on the IMLS method, the essential boundary conditions can applied directly. Based on the Galerkin weak form, we obtain the formulae of the IEFG method for solving two-dimensional elastoplasticity problems. The IEFG method has some advantages, such as simpler formulae and directly applying the essential boundary conditions, over the conventional element-free Galerkin (EFG) method. The results of three numerical examples show that the computational precision of the IEFG method is higher than that of the EFG method.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,