Article ID Journal Published Year Pages File Type
1703777 Applied Mathematical Modelling 2014 17 Pages PDF
Abstract

For large-scale wave analyses of fluid-saturated porous media, a conventional time-domain boundary element method (BEM) cannot be applied because of the following reasons: (1) no time-domain fundamental solutions are known for some problems, (2) the method sometimes suffers from instability, and (3) the analyses require large amounts of computational time and memory. In this study, an innovative time-domain BEM is developed for a fluid-saturated porous medium. The formulation presented herein overcomes the above disadvantages using a convolution quadrature method (CQM), first proposed by Lubich, and hybrid-parallelization with both MPI and OpenMP. Problems involving the scattering of an incident plane wave by cavities in a 2-D poroelastic medium are solved as a means of validating the proposed method.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,