Article ID Journal Published Year Pages File Type
1703888 Applied Mathematical Modelling 2014 15 Pages PDF
Abstract

This paper details the evaluation and enhancement of the vertex-centred finite volume method for the purpose of modelling linear elastic structures undergoing bending. A matrix-free edge-based finite volume procedure is discussed and compared with the traditional isoparametric finite element method via application to a number of test-cases. It is demonstrated that the standard finite volume approach exhibits similar disadvantages to the linear Q4 finite element formulation when modelling bending. An enhanced finite volume approach is proposed to circumvent this and a rigorous error analysis conducted. It is demonstrated that the developed finite volume method is superior to both standard finite volume and Q4 finite element methods, and provides a practical alternative to the analysis of bending-dominated solid mechanics problems.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , ,