Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1703967 | Applied Mathematical Modelling | 2013 | 12 Pages |
This paper presents a methodology combining experimental measurements with computational modeling to find the heat flux extracted during spray cooling of a metal surface. Controlled experiments are performed to impinge air-mist spray onto a metal probe surface while applying induction heating to follow a desired temperature history. A transient axisymmetric computational model of induction heating which couples electromagnetics and heat conduction has been developed and validated with a test problem. The model is calibrated to match transient dry measurements and then used to simulate a steady-state air-mist spray cooling experiment in order to quantify the heat extracted from the probe surface by the boiling water droplets. A detailed example is presented to illustrate this approach.