Article ID Journal Published Year Pages File Type
1703990 Applied Mathematical Modelling 2013 9 Pages PDF
Abstract

We compared a cellular automaton (CA)–finite element (FE) model and a phase-field (PF)–FE model to simulate equiaxed dendritic growth during the solidification of cubic crystals. The equations of mass and heat transports were solved in the CA–FE model to calculate the temperature field, solute concentration, and the dendritic growth morphology. In the PF–FE model, a PF variable was used to identify solid and liquid phases and another PF variable was considered to determine the evolution of solute concentration. Application to Al–3.0 wt.% Cu alloy illustrates the capability of both CA–FE and PF–FE models in modeling multiple arbitrarily-oriented dendrites in growth of cubic crystals. Simulation results from both models showed quantitatively good agreement with the analytical model developed by Lipton–Glicksman–Kurz (LGK) in the tip growth velocity and the tip equilibrium liquid concentration at a given melt undercooling. The dendrite morphology and computational time obtained from the CA–FE model are compared to those of the PF–FE model and the distinct advantages of both methods are discussed.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,