Article ID Journal Published Year Pages File Type
1704051 Applied Mathematical Modelling 2013 18 Pages PDF
Abstract

In this paper, free vibration analysis of cracked composite beam subjected to coupled bending–torsion loading is presented. The composite beam is assumed to have an open edge crack of length a. A first order shear deformation theory is applied to count for the effect of shear deformations on natural frequencies as well as the effect of coupling in torsion and bending modes of vibration. Governing equations and boundary conditions are derived using Hamilton principle. Local flexibility matrix is used to obtain the additional boundary conditions of the beam in cracked area. After obtaining the governing equations and boundary conditions, generalized differential quadrature (GDQ) method is applied to solve the obtained eigenvalue problem. Finally, some numerical results of beams with various boundary conditions and different fiber orientations are given to show the efficiency of the method. In addition, to study the effect of shear deformations, numerical results of the current model are compared with previously given results in which shear deformations were neglected.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,