Article ID Journal Published Year Pages File Type
1704276 Applied Mathematical Modelling 2014 11 Pages PDF
Abstract

In this paper, dual reciprocity (DR) boundary element method (BEM) is reformulated using new radial basis function (RBF) to approximate the inhomogeneous term of Navier’s differential equation (i.e., inertia term). This new RBF, which is in the form of exp(iωr), is called complex Fourier RBF hereafter. The present RBF has simultaneously collected the properties of Gaussian and real Fourier RBF reported in literature together. Consequently, this promising feature has provided more robustness and potency of the proposed method. The required kernels for displacement and traction particular solutions are derived by employing the method of variation of parameters. As some terms of these kernels are singular, a new simple smoothing trick is employed to resolve the singularity problem. Moreover, the limiting values of relevant kernels are evaluated. The validity, accuracy, and strength of the present formulation are illustrated throughout several numerical examples. The numerical results show that the proposed complex Fourier RBF represents more accurate solutions, using less degree of freedom compared to other RBFs available in the literature.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,