Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1704279 | Applied Mathematical Modelling | 2014 | 20 Pages |
Centre manifold method is an accurate approach for analytically constructing an advection–diffusion equation (and even more accurate equations involving higher-order derivatives) for the depth-averaged concentration of substances in channels. This paper presents a direct numerical verification of this method with examples of the dispersion in laminar and turbulent flows in an open channel with a smooth bottom. The one-dimensional integrated radial basis function network (1D-IRBFN) method is used as a numerical approach to obtain a numerical solution for the original two-dimensional (2-D) advection–diffusion equation. The 2-D solution is depth-averaged and compared with the solution of the 1-D equation derived using the centre manifolds. The numerical results show that the 2-D and 1-D solutions are in good agreement both for the laminar flow and turbulent flow. The maximum depth-averaged concentrations for the 1-D and 2-D models gradually converge to each other, with their velocities becoming practically equal. The obtained numerical results also demonstrate that the longitudinal diffusion can be neglected compared to the advection.