Article ID Journal Published Year Pages File Type
1704330 Applied Mathematical Modelling 2013 16 Pages PDF
Abstract

We revisit in this paper the theory of axisymmetric vortex rings in an ideal fluid. The boundary separating the vortex ring from the external (potential) flow is assumed of elliptic shape. For a given distribution of vorticity in the vortex core, we theoretically put into evidence the critical parameter for the existence of non-trivial solutions, thus confirming the numerical observation of Durst et al. [ZAMP 32 (1981) 156]. A sharp estimation of the critical threshold is analytically derived. Theoretical predictions are confirmed by numerical simulations using finite elements. A new numerical algorithm is presented and shown to display better performances compared to previous published algorithms using finite differences. The convergence of the iterative algorithm is proved using the theory of elliptic partial differential equations with discontinuous nonlinearities.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,