Article ID Journal Published Year Pages File Type
1704397 Applied Mathematical Modelling 2012 19 Pages PDF
Abstract

In this paper, we present a computational method for solving 2D and 3D Poisson equations and biharmonic equations which based on the use of Haar wavelets. The highest derivative appearing in the differential equation is expanded into the Haar series, this approximation is integrated while the boundary conditions are incorporated by using integration constants. In 2D the first transform the spectral coefficients into the nodal variable values and then use Kronecker products to construct the approximations for derivatives over a tensor product grid of the horizontal and vertical blocks. Finally, solutions to four test problems are investigated.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,