Article ID Journal Published Year Pages File Type
1704431 Applied Mathematical Modelling 2012 14 Pages PDF
Abstract

In this paper, a mesh-less method, called Smoothed Particle Hydrodynamics (SPH) is used to simulate the nanomachining operation in order to assist with the understanding of the fundamental mechanisms of nano scale material deformation and the characteristics of the post machined surface. An elasto-plastic nano-machining analysis is used to form a nano-groove using a conical tool on a copper specimen. The SPH solutions are validated against nano scale machining experiments conducted using a nanoindenter. The simulated results showed that the normal force is greater than the cutting force in this nano scale machining operation, which is consistent with the experimental results. Both the ploughing and cutting mechanisms were observed in these machining conditions and increased with the increase of the depth of cut. Moreover, the results reveal that the larger negative rake angle reduced the ploughing mechanism and caused higher residual stress and strain along the machined surface. Therefore, the effect of machining parameters on the nano deformation mechanism and the quality of the machined surface can be rapidly assessed using SPH.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , ,