Article ID Journal Published Year Pages File Type
1704455 Applied Mathematical Modelling 2014 19 Pages PDF
Abstract

Electrical discharge machining (EDM) is inherently a stochastic process. Predicting the output of such a process with reasonable accuracy is rather difficult. Modern learning based methodologies, being capable of reading the underlying unseen effect of control factors on responses, appear to be effective in this regard. In the present work, support vector machine (SVM), one of the supervised learning methods, is applied for developing the model of EDM process. Gaussian radial basis function and ε-insensitive loss function are used as kernel function and loss function respectively. Separate models of material removal rate (MRR) and average surface roughness parameter (Ra) are developed by minimizing the mean absolute percentage error (MAPE) of training data obtained for different set of SVM parameter combinations. Particle swarm optimization (PSO) is employed for the purpose of optimizing SVM parameter combinations. Models thus developed are then tested with disjoint testing data sets. Optimum parameter settings for maximum MRR and minimum Ra are further investigated applying PSO on the developed models.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,