Article ID Journal Published Year Pages File Type
1704518 Applied Mathematical Modelling 2013 12 Pages PDF
Abstract

In this paper, the exact forms of integrals in the meshless local boundary integral equation method are derived and implemented for elastostatic problems. A weak form for a set of governing equations with a unit test function or polynomial test functions is transformed into local integral equations. Each node has its own support domain and is surrounded by a local integral domain with different shapes of boundaries. The meshless approximation based on the radial basis function (RBF) is employed for the implementation of displacements. A completed set of closed forms of the local boundary integrals are obtained. As there are no numerical integrations to be carried out the computational time is significantly reduced. Three examples are presented to demonstrate the application of this approach in solid mechanics.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,