Article ID Journal Published Year Pages File Type
1704596 Applied Mathematical Modelling 2012 11 Pages PDF
Abstract

A mathematical model is formulated to describe the spread of hepatitis B. The stability of equilibria and persistence of disease are analyzed. The results shows that the dynamics of the model is completely determined by the basic reproductive number ρ0. If ρ0 < 1, the disease-free equilibrium is globally stable. When ρ0 > 1, the disease-free equilibrium is unstable and the disease is uniformly persistent. Furthermore, under certain conditions, it is proved that the endemic equilibrium is globally attractive. Numerical simulations are conducted to demonstrate our theoretical results. The model is applied to HBV transmission in China. The parameter values of the model are estimated based on available HBV epidemic data in China. The simulation results matches the HBV epidemic data in China approximately.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,