Article ID Journal Published Year Pages File Type
1704712 Applied Mathematical Modelling 2013 9 Pages PDF
Abstract

In this study, we investigate a pine wilt transmission model with nonlinear incidence rates. The stability of the system is analyzed for disease-free and endemic equilibria. It is proved that the global dynamics are completely by the basic reproduction number R0R0. If R0R0 is less than one, the disease-free equilibrium is globally asymptotically stable, and in such a case, the endemic equilibrium does not exist. If R0R0 is greater than one, the disease persists and the unique endemic equilibrium is globally asymptotically stable.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,