Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1704730 | Applied Mathematical Modelling | 2011 | 8 Pages |
Using a Thermecmastor-Z hot simulator, dynamic recrystallization (DRX) and static recrystallization (SRX) behavior of a Nb-microalloyed steel was investigated by single-hit compression tests and double-hit compression tests, respectively. The experimental results show that DRX will more easily occur at higher deformation temperature and lower strain rate. The deformation activation energy and stress exponent for the Nb-microalloyed steel are calculated to be 379.29 ± 23.56 kJ/mol and 5.76 in temperature range of 950 °C to 1100 °C by regression analysis, respectively. Furthermore, a semi-empirical model is developed to identify the peak stress and strain for DRX. It is found that SRX kinetics follows Avrami’s law, and the softening fraction predicted by the model agrees well with experimental results.