Article ID Journal Published Year Pages File Type
1704743 Applied Mathematical Modelling 2011 9 Pages PDF
Abstract

In this paper, we construct the exact solution for fluid motion caused by the uniform expansion of a cylindrical or spherical piston into still air. Following Lighthill [1], we introduce velocity potential into the analysis and seek a similarity form of the solution. We find both numerical and analytic solutions of the second order nonlinear differential equation, with the boundary conditions at the shock and at the piston. The results obtained from the analytic solutions justify numerical solution and the approximate solution of Lighthill [1]. We find that although the approximate solution of Lighthill [1] gives remarkably good numerical results, the analytic form of that solution is not mathematically satisfactory. We also find that in case of spherical piston motion Lighthill’s [1] solution differs significantly from that of our analytic and numerical solutions. We use Pade′ approximation to extend the radius of convergence of the series solution. We also carry out some local analysis at the boundary to obtain some singular solutions.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,