Article ID Journal Published Year Pages File Type
1704926 Applied Mathematical Modelling 2011 8 Pages PDF
Abstract

In this paper we consider the single machine past-sequence-dependent (p-s-d) setup times scheduling problems with general position-dependent and time-dependent learning effects. By the general position-dependent and time-dependent learning effects, we mean that the actual processing time of a job is not only a function of the total normal processing times of the jobs already processed, but also a function of the job’s scheduled position. The setup times are proportional to the length of the already processed jobs. We consider the following objective functions: the makespan, the total completion time, the sum of the θth (θ ⩾ 0) power of job completion times, the total lateness, the total weighted completion time, the maximum lateness, the maximum tardiness and the number of tardy jobs. We show that the problems of makespan, the total completion time, the sum of the θth (θ ⩾ 0) power of job completion times and the total lateness can be solved by the smallest (normal) processing time first (SPT) rule, respectively. We also show that the total weighted completion time minimization problem, the maximum lateness minimization problem, maximum tardiness minimization problem and the number of tardy jobs minimization problem can be solved in polynomial time under certain conditions.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,