Article ID Journal Published Year Pages File Type
1704993 Applied Mathematical Modelling 2011 12 Pages PDF
Abstract

This paper investigates the problem of adaptive stabilization control design for a class of high order nonholonomic systems in power chained form with strong nonlinear drifts, including unmodeled dynamics, and dynamics modeled with unknown nonlinear parameters. A parameter separation technique is introduced to transform the nonlinear parameterized system into a linear-like parameterized system. Then, by the use of input-state scaling technique and adding a power integrator backstepping approach, an adaptive state feedback controller is obtained. The adaptive control based switching strategy is proposed to eliminate the phenomenon of uncontrollability. Global asymptotic regulation of the closed-loop system states and the boundedness of other signals are guaranteed. Simulation examples demonstrate the effectiveness of the proposed scheme.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , ,