Article ID Journal Published Year Pages File Type
1705026 Applied Mathematical Modelling 2011 10 Pages PDF
Abstract

This paper presents a new technique for model order reduction (MOR) that is based on an artificial neural network (ANN) prediction. The ANN-based MOR can be applied for different scale systems with substructure preservation. In the proposed technique, the ANN is implemented for predicting the unknown elements of the reduced order model. Prediction of the ANN architecture is based on minimizing the cost function obtained by the difference between the actual and desired system behaviour. The ANN prediction process is pursued while maintaining the full order substructure in the reduced model. The proposed ANN-based model order reduction method is compared to recently published work on MOR techniques. Simulation results verify the validity of the new MOR technique.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,