Article ID Journal Published Year Pages File Type
1705040 Applied Mathematical Modelling 2013 19 Pages PDF
Abstract
This paper introduces a generalization and automation of the Wiener Hermite expansion with perturbation (WHEP) technique to solve a class of stochastic nonlinear partial differential equations with a perturbed nonlinearity. The automated algorithm generates the deterministic resultant linear equations according to the application of a general linear differential operator and the input parameters. Sample output with different nonlinearities, orders and corrections are presented. The resultant equations are solved numerically and the ensemble average and variance are computed and compared with previous research work. Higher order solutions with higher corrections are computed to show the importance of the generalization of the WHEP technique. The current work extends the use of WHEP for solving stochastic nonlinear differential equations.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,