Article ID Journal Published Year Pages File Type
1705069 Applied Mathematical Modelling 2010 16 Pages PDF
Abstract

The geometric complexity and high fluid speeds involved in high pressure die casting (HPDC) combine to give strongly three dimensional fluid flow with significant free surface fragmentation and splashing. A simulation method that has proved particularly suited to modelling HPDC is Smoothed Particle Hydrodynamics (SPH). Materials are approximated by particles that are free to move around rather than by fixed grids, enabling more accurate prediction of fluid flows involving complex free surface motion. Three practical industrial case studies of SPH simulated HPDC flows are presented; aluminium casting of a differential cover (automotive), an electronic housing and zinc casting of a door lock plate. These show significant detail in the fragmented fluid free surfaces and allow us to understand the predisposition to create defects such as porosity in the castings. The validation of flow predictions coupled with heat transfer and solidification is an important area for such modelling. One powerful approach is to use short shots, where insufficient metal is used in the casting or the casting shot is halted part way through, to leave the die cavity only partially filled. The frozen partial castings capture significant detail about the order of fill and the flow structures occurring during different stages of filling. Validation can occur by matching experimental and simulated short shots. Here we explore the effect of die temperature, metal super-heat and volume fill on the short shots for the casting of a simple coaster. The bulk features of the final solid castings are found to be in good agreement with the predictions, but the fine details appear to depend on surface behaviour of the solidifying metals. This potentially has significant implications for modelling HPDC.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , ,