Article ID Journal Published Year Pages File Type
1705125 Applied Mathematical Modelling 2012 10 Pages PDF
Abstract

Stochastic shape sensitivity in forming process of powder metallurgy materials is analyzed. For this purpose the rigid-poroplastic material model has been assumed. The theoretical formulation for stochastic shape sensitivity is described which presents probabilistic distributions taking into account random initial and boundary conditions. The control volume approach is discussed. Stochastic finite element equations for rigid – poroplastic materials are solved for the first two probabilistic moments. Numerical simulations were performed to illustrate shape sensitivity problems in the process of compression of rigid-poroplastic cylinder. The differences in deterministic and stochastic sensitivities are presented. The results derived can be used for the subsequent quantitative stochastic shape design as well as stochastic shape optimization.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
,