Article ID Journal Published Year Pages File Type
1705194 Applied Mathematical Modelling 2011 10 Pages PDF
Abstract

A new method for producing uniformly sized metal droplets is proposed. In this method, an intermittent electromagnetic pinch force is applied to a capillary jet of liquid metal to generate fluctuations of equal interval on the surface of the jet. As the fluctuations grow, the liquid metal jet breaks into small droplets whose size depends on the frequency of the intermittent electromagnetic pinch force. The breakup of the capillary jet is numerically simulated by performing multiphase fluid flow analysis with surface tracking (volume of fluid method) and electromagnetic force analysis. The simulation results agree well with the results of model experiments. The jet breaks up into uniformly sized droplets when the frequency of the intermittent force equals the frequency that corresponds to the natural disturbance wavelength of the capillary jet.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,