Article ID Journal Published Year Pages File Type
1705265 Applied Mathematical Modelling 2013 9 Pages PDF
Abstract

Hydraulic jumps are usually used to dissipate energy in hydraulic engineering. In this paper, the turbulent submerged hydraulic jumps are simulated by solving the unsteady Reynolds averaged Navier–Stokes equations along with the continuity equation and the standard k–ɛ equations for turbulence modeling. The Lagrangian moving grid method is employed for the simulation of the free surface. In the developed model, kinematic free-surface boundary condition is solved simultaneously with the momentum and continuity equations, so that the water elevation can be obtained along with velocity and pressure fields as part of the solution. Computational results are presented for Froude numbers ranging from 3.2 to 8.2 and submergence factors ranging from 0.24 to 0.85. Comparisons with experimental measurements show that numerical model can simulate the velocity field, variation of free surface, maximum velocity, Reynolds shear and normal stresses at various stations with reasonable accuracy.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,