Article ID Journal Published Year Pages File Type
1705328 Applied Mathematical Modelling 2012 11 Pages PDF
Abstract

In this paper, design and simulation of a carbon nanotube-based nano-electromechanical shock switch is reported. The switch is represented by a carbon nanotube placed over a ground electrode. Response of the nano-switch based on nonlinear beam theory is studied using Galerkin’s method. Up to five mode shapes have been utilized to capture the response of system and results are validated by comparing with Molecular Dynamics (MD) simulation. Due to their high stiffness, CNTs cannot be actuated to pull-in (switch ON) state by conventional mechanical shocks in range of 10–1000 g under one-step voltage. Here, a multi-steps voltage modification is applied to enhance the actuation. Employing this method, a nano-switch with fixed geometry can be adjusted to be triggered by wide rang of mechanical shocks (10–1000 g).

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,