Article ID Journal Published Year Pages File Type
1705402 Applied Mathematical Modelling 2011 11 Pages PDF
Abstract

This study aimed to evaluate continuous and simultaneous variations of dental implant diameter and length, and to identify their relatively optimal ranges in the posterior mandible under biomechanical consideration. A 3D finite element model of a posterior mandibular segment with dental implant was created. Implant diameter ranged from 3.0 to 5.0 mm, and implant length ranged from 6.0 to 16.0 mm. The results showed that under axial load, the maximum Von Mises stresses in cortical and cancellous bones decreased by 76.53% and 72.93% respectively, with the increasing of implant diameter and length; and under buccolingual load, by 83.97% and 84.93%, respectively. Under both loads, the maximum displacements of implant-abutment complex decreased by 58.09% and 75.53%, respectively. The results indicate that in the posterior mandible, implant diameter plays more significant roles than length in reducing cortical bone stress and enhancing implant stability under both loads. Meanwhile, implant length is more effective than diameter in reducing cancellous bone stress under both loads. Moreover, biomechanically, implant diameter exceeding 4.0 mm and implant length exceeding 12.0 mm is a relatively optimal combination for a screwed implant in the posterior mandible with poor bone quality.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , , , , ,