Article ID Journal Published Year Pages File Type
1705494 Applied Mathematical Modelling 2013 16 Pages PDF
Abstract

Effects of localized elliptical (circular being a special case) cylindrical surface flaws in laminated composite plates are investigated by using C°-type triangular composite plate elements, formulated on the assumptions of transverse inextensibility and layer-wise constant shear-angle theory (LCST). Numerical results for a cross-ply laminate compromised by the presence of an external part-through elliptical/circular cylindrical slot indicate the existence of severe cross-sectional warping in the vicinity of the surface flaw and plate boundaries. Furthermore, three-dimensional nature of the stress concentration factor in the neighborhood of the elliptical or circular cylinder shaped surface flaw boundary is clearly exhibited. Besides, very high stress concentration factors are found in the layer weakened by the surface flaw. Most importantly, the effects of stress singularity in the neighborhood of the circumferential re-entrant corner lines of the elliptical/circular cylindrical surface flaws, weakening laminated composite plates, are numerically assessed, because of their role in crack initiation. Finally, the interaction of this singularity with free edge stress singularity at the plate boundary, and the implication of such interactions (i.e., violation of St. Venant’s principle) in regards to testing of laminated composite specimens are thoroughly investigated.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,