Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1705529 | Applied Mathematical Modelling | 2010 | 10 Pages |
Incipient separation over wall irregularities in a steady two dimensional flow field of a perfect fluid which has transonic speed characteristics has been investigated considering viscous-inviscid interactions at high Reynolds number. The aim of this work is to investigate dependence of the critical hump height (when a well attached flow over rigid body surface turns into a separated one) on the Karman–Guderley parameter which characterizes of the local flow field. The analysis of the flow field starts with the so-called inspection analysis of the flow properties and then the interaction problem has been constructed using the asymptotic analysis of triple-deck structure of interaction region. Finally, a method based on a semi-direct solution of governing equations of the transonic interaction problem has been used to obtain the numerical solution of the problem.