Article ID Journal Published Year Pages File Type
1705531 Applied Mathematical Modelling 2010 12 Pages PDF
Abstract

An efficient methodology is proposed to find the optimal shape of arch dams including fluid–structure interaction subject to earthquake ground motion. In order to reduce the computational cost of optimization process, an adaptive neuro-fuzzy inference system (ANFIS) is built to predict the dam effective response instead of directly evaluating it by a time-consuming finite element analysis (FEA). The presented ANFIS is compared with a widespread neural network termed back propagation neural network (BPNN) and it appears a better performance generality for estimating the dam response. The optimization task is implemented using an improved version of particle swarm optimization (PSO) named here as IPSO. In order to assess the effectiveness of the proposed methodology, the optimization of a real world arch dam is performed via both IPSO–ANFIS and PSO–BPNN approaches. The numerical results demonstrate the computational advantages of the proposed IPSO–ANFIS for optimal design of arch dams when compared with the PSO–BPNN approach.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,