Article ID Journal Published Year Pages File Type
1705604 Applied Mathematical Modelling 2010 18 Pages PDF
Abstract

Three-dimensional draining flow of a two-fluid system from a circular tank is considered. The two fluids are inviscid and incompressible, and are separated by a sharp interface. There is a circular hole positioned centrally in the bottom of the tank, so that the flow is axially symmetric. The mean position of the interface moves downwards as time progresses, and eventually a portion of the interface is withdrawn into the drain. For narrow drain holes of small radius, the interface above the centre of the drain is pulled down towards the hole. However, for drains of larger radius the portion of the interface above the drain edge is drawn down first, rather than the central section. Non-linear results are obtained with a novel spectral technique, and are also compared against the predictions of linearized theory. Unstable Rayleigh–Taylor type flows, in which the upper fluid is heavier than the lower one, are also discussed.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,