Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1705699 | Applied Mathematical Modelling | 2011 | 14 Pages |
A stochastic differential equation modelling a Marchuk’s model is investigated. The stochasticity in the model is introduced by parameter perturbation which is a standard technique in stochastic population modelling. Firstly, the stochastic Marchuk’s model has been simplified by applying stochastic center manifold and stochastic average theory. Secondly, by using Lyapunov exponent and singular boundary theory, we analyze the local stochastic stability and global stochastic stability for stochastic Marchuk’s model, respectively. Thirdly, we explore the stochastic bifurcation of the stochastic Marchuk’s model according to invariant measure and stationary probability density. Some new criteria ensuring stochastic pitchfork bifurcation and P-bifurcation for stochastic Marchuk’s model are obtained, respectively.