Article ID Journal Published Year Pages File Type
1705754 Applied Mathematical Modelling 2012 8 Pages PDF
Abstract

In the current rapidly changing manufacturing conditions, controlling manufacturing systems effectively and efficiently is a critical issue for enterprises, especially in their early stages. However, it is often difficult to make correct decisions, with the insufficient information available at such times. We thus develop a two-stage modeling procedure to build a predictive model using few samples. We first use three conventional approaches to establish forecasting models, and then implement pre-testing with the proposed grey-based fitness measuring index to determine the weights to create a hybrid model. Two datasets, including color filter manufacturing data and the Asia-Pacific Economic Cooperation energy database, are evaluated in the experiment, and the results show that the proposed method not only has good forecasting performance, but also reduces the influence forecasting errors. Accordingly, the proposed procedure is thus considered a feasible approach for small-data-set forecasting.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , ,